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The three-dimensional wave pattern generated by a moving pressure distribution of 
finite extent acting on the surface of water of depth h is studied. It is shown that, 
when the pressure distribution travels at a speed near the linear-long-wave speed, 
the response is governed by a forced nonlinear Kadomtsev-Petviashvili (KP) 
equation, which describes a balance between linear dispersive, nonlinear and three- 
dimensional effects. It is deduced that, in a channel of finite width 2w, three- 
dimensional effects are negligible if w 4 h2/a, a being a typical wave amplitude; in 
such a case the governing equation reduces to the forced Korteweg4e Vries equation 
derived in previous studies. For aw/h2 = O( l), however, three-dimensional effects are 
important; numerical calculations based on the K P  equation indicate that a series 
of straight-crested solitons are radiated periodically ahead of the source and a 
three-dimensional wave pattern forms behind. The predicted dependencies on 
channel width of soliton amplitude and period of soliton formation compare 
favourably with the experimental results of Ertekin, Webster & Wehausen (1984). 
In a channel for which aw/h2 %- 1, three-dimensional, unsteady disturbances appear 
ahead of the pressure distribution. 

1. Introduction 
In  the last few years, considerable research activity has focused on the generation 

of nonlinear waves by moving sources. The original motivation was provided by the 
experimental observations of Huang et al. (1982); they pointed out that ships 
travelling in channels of finite depth and width at near-critical speeds, i.e. close to 
the linear-long-wave speed7 continuously excite solitons which form and propagate 
upstream. In spite of the fact that the channel width may be large compared with 
the dimensions of the ship, these solitons are straight-crested, spanning the entire 
width of the channel. Similar phenomena have been observed in continuously 
stratified flow over topography (Baines 1979) and, more recently, in two-layer flow 
(Baines 1984). 

On physical grounds, the importance of nonlinear effects near critical speed, 
manifested in the appearance of solitons, can be understood as follows : according to 
linear theory, the generated waves have to be steady in the frame of reference of the 
moving source, after all initial transients have decayed. As critical speed is 

t Soliton radiation was much more intense at near-critical speeds, but small-amplitude upstream 
disturbances have been observed at Froude numbers as low as 0.2; for high supercritical Froude 
numbers, wave breaking occurs. 
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approached, the linear dispersion relation indicates that the steady long waves are 
almost non-dispersive and that the corresponding group velocity tends to vanish in 
the moving frame; thus, however small the wave amplitude, nonlinear effects cannot 
be neglected in comparison with dispersive effects. Furthermore, the vanishing of the 
group velocity of the generated long waves close to critical conditions implies that 
the energy transferred by the source to the wave disturbance cannot be easily 
radiated away, suggesting the possibility that no steady state is reached. 

Theoretical evidence for the excitation of solitons near critical conditions was first 
provided by the numerical calculations of Wu & Wu (1982). Using as excitation a 
pressure distribution localized in the streamwise direction but entirely uniform in the 
spanwise direction, they solved numerically the Boussinesq equations and found a 
series of solitons propagating ahead of the source. In  subsequent work, Akylas (1984) 
(hereinafter referred to as I) demonstrated that, near critical conditions, the 
linearized water-wave theory is singular in the sense that no linear steady-state 
response exists; in view of the balance between dispersion and nonlinearity, which 
occurs close to critical conditions, and the fact that the generated waves follow the 
source, the appropriate evolution equation is a forced Korteweg-de Vries (KdV). 
Numerical solutions of the forced KdV again show the appearance of solitons. 
Extensions of this study have been made by, among others, Cole (1985) and Grimshaw 
& Smyth (1985) who pointed out, respectively, that the same KdV equation is valid 
for two-dimensional transcritical flow past a bump and stratified flow over 
topography. Also, in agreement with the continuous radiation of solitons revealed 
by the numerical calculations, Miles (1986) recently showed analytically that no 
nonlinear steady state exists for a certain range of transcritical speeds. 

The theoretical work cited above, based on the assumption that the source is 
uniform in the spanwise direction and, thus, that waves are straight-crested ab initio 
both upstream and downstream, cannot furnish a quantitative description of the 
experimental findings of Huang et al. (1982) and Ertekin et al. (1984)t: the 
experiments indicate that the response is two-dimensional only upstream but 
three-dimensional downstream ; furthermore, soliton-radiation characteristics, such 
as amplitude and period of formation, depend critically on the so-called blockage 
coefficient, the ratio of the mid-ship-section area to the cross-section area of the 
channel. 

Three-dimensional aspects of the wave pattern near critical conditions were first 
explored by Mei (1986) who showed that, for a slender ship advancing in a channel, 
the response is two-dimensional both upstream and downstream if the channel width 
2w is not too large: w 4 h2/a, h being the channel depth and a the typical wave 
amplitude; to leading order, the governing equation is the forced KdV derived in I, 
the forcing being proportional to the blockage coefficient. The same conclusion was 
reached by Cole (1986) who, however, restricted the channel width to be comparable 
to the water depth, w/h = O(1). As far as we are aware, the only theoretical study 
which can account for the radiation of solitons ahead of the source and the 
three-dimensional nature of the response behind the source is the recent numerical 
work of Ertekin, Webster & Wehausen (1986). Following their earlier two-dimen- 
sional computations (Ertekin et al. 1984), they solved numerically the three- 
dimensional Green-Naghdi equations in a channel of fixed width, using as a source 

t Lee (1985) (see also Wu 1986), however, carried out experiments using a two-dimensional 
bottom bump moving at transcritical speed aa a source and found reasonable quantitative 
agreement with the predictions of the two-dimensional theory. 
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a rectangular pressure distribution of width about half the channel width, and 
examined the variation with speed of the generated straight-crested solitons. 

The present work is primarily concerned with the dependence of soliton radiation 
on channel width. The experiments of Ertekin et al. (1984) clearly indicate that the 
period of soliton formation increases while soliton amplitude decreases as the channel 
width is increased. This suggests what seems to be intuitively clear: no straight- 
crested solitons can be radiated upstream for an infinitely wide channel. However, 
it is conceivable that three-dimensional wave disturbances a& radiated, which 
propagate upstream and slowly disperse in the absence of channel walls. 

Our investigation is based on the forced Kadomtsev-Petviashvili (KP) equation. 
This equation, the three-dimensional counterpart of the forced KdV equation derived 
in I, is shown to describe the appropriate balance between linear dispersive, nonlinear 
and three-dimensional effects close to critical speed. Apart from being simpler to 
handle numerically than the Boussinesq or the Green-Naghdi equations, the K P  
equation brings out explicitly the weak dependence of the wave pattern on the 
spanwise direction; in the limit that the channel width is not too large in the sense 
of Mei (1986), it  reduces to the forced KdV equation. 

In  a finite channel, the linearized K P  equation shows that no steady state is reached 
at critical conditions; as in the corresponding two-dimensional problem, in the 
absence of nonlinear effects, energy cannot be radiated away from the source. 
Numerical calculations based on the full K P  equation indicate that a series of 
straight-crested solitons axe radiated periodically ahead of the source and a three- 
dimensional wave pattern forms behind. The predicted dependencies on channel 
width of soliton amplitude and period of soliton formation compare favourably with 
the experimental results of Ertekin et al. (1984). The extent of validity of the 
quasi-two-dimensional theory of Mei (1986) is assessed; it is found that the maximum 
dimensionless channel width aw/h2 for which the downstream disturbance is more 
or less two-dimensional depends crucially on the source characteristics. The tendency 
of solitons to become straight-crested in the presence of sidewalls is further illumi- 
nated by solving numerically an initial-value problem with a soliton spanning only 
half of the channel width as initial condition. It is found that, in agreement with 
experimental observations of Ertekin (1984), the disturbance very soon adjusts itself 
so as to form a straight-crested soliton of lower amplitude which spans the entire 
channel width. 

In  an unbounded channel, at critical conditions, there exists a linear steady state 
which, however, involves the displacement of an infinite mass of water from behind 
to ahead of the source. Numerical calculations, on the other hand, indicate that 
three-dimensional, unsteady disturbances are generated upstream owing to nonlinear 
effects, suggesting the possibility that no nonlinear steady state is reached in this case 
either. 

2. Forced KP equation 
A prescribed three-dimensional pressure distribution p travelling at constant speed 

is acting on the free surface of water of uniform depth h, 0 < y < h. In  the frame 
of reference moving with the source, the pressure is stationary in the presence of 
a uniform current U in the water. Assuming inviscid and irrotational flow, the 
ensuing gravity-wave motion is described by the velocity potential 
@ = Ux- 1 / 2 V t + $ ( x ,  y, z,  t )  and the free-surface elevation y = h + ~ ( x ,  z, t ) ,  where x 
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is the streamwise, y the vertical, and z the spanwise coordinate. We choose 
dimensionless (primed) variables according to 
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where 1 is a typical wavelength, a is a typical wave amplitude, co = (gh): is the linear 
long-water-wave speed, p is the water density, g is the gravitational acceleration, and 
L, D stand for typical dimensions of the pressure distribution in the streamwise and 
spanwise directions respectively. In terms of these dimensionless variables, when the 
primes are dropped, the classical gravity water-wave problem reads 

9, = 0 (y = 01, (5 )  

where F = U/co is the Froude number, p = h/l is a measure of dispersion and E = a / h  
is a measure of nonlinearity. 

According to linear theory ( E  = 0), the main characteristics of the wave pattern 
generated by the moving source can be readily deduced from the linear dispersion 
relation of free gravity water waves: 

u2 = - tanhpk, 

where k is the magnitude of the wavenumber vector and w is the wave frequency in 
the stationary reference frame ; when the transients induced by the initial acceleration 
of the source have died out, a wave of wavenumber k, inclined at an angle a with 
respect to the streamwise direction, will persist only if it is stationary in the frame 
of the moving source (Lighthill 1978 $3.9) : 

(6) 
k 

c1 

piFk cosa = (k tanhpk):. (7) 

Equation (7) gives the wavenumber of the wave to be found in the direction a, for 
any F. Our interest centres on the wave pattern at nearly critical Froude number, 
F x 1. Then, condition (7) is satisfied for long waves (p Q 1) if F = 1 +O(p2) and 
COB a = 1 +0(p2), implying that the corresponding wave frequency in the frame of 
the source is O(p2). Therefore, long, almost two-dimensional waves (k,/k, = 001)) are 
generated close to critical conditions; for such waves, in the limit p+O, nonlinear 
effects cannot be neglected in comparison with linear dispersive effects and a balance 
between dispersion and nonlinearity is anticipated. 

To describe quantitatively the wave response close to critical conditions, following 
the above qualitative arguments, we write 

F = 1 +Ap2 ( A  = 0(1)), ( 8 4  

Z = pz, T = pzt. ( 8 b )  

and define a stretched spanwise coordinate Z and a slow time T: 
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Thus, Laplace's equation (2) and the bottom boundary condition ( 5 )  give 

substitution of (9) into the free-surface conditions (3), (4) leads to a set of two coupled 
equations for f,  7 

7 z + f z z + ~ ~ 7 f z z + 7 Z f Z ~ + ~ z ~ 7 ~ + f Z Z + ~ 7 Z - ~ f z Z Z Z ~  = 0(E2,P4,@), (10a) 

+ P 2 ( f T  + Afz -if,,,) = - P + 0 ( E 2 ,  P4, @). ( 10 b)  7 +fz + 
It is clear now that balance between dispersion and nonlinearity is achieved by the 
choice E = p2; eliminating f from (10a, b), a single equation for is obtained to leading 
order : 

This is a forced KP  equation, the three-dimensional counterpart of the forced KdV 
equation derived in I ; it brings out the balance between linear dispersive, nonlinear, 
and thee-dimensional effects which is realized close to critical conditions. The steady 
version of this equation was previously derived by Mei (1976) for a slender ship 
moving at transcritical speed, assuming that a steady state exists. 

In  case the pressure distribution is travelling in a channel of finite dimensionless 
width 2 W (as in the experiments of Ertekin et al. 1984), the no-flux requirement at 
the walls 2 = & W imposes the boundary conditions 

q z = o  ( Z = f W ) .  (12) 

The experiments of Ertekin et al. (1984) suggest that soliton radiation depends on 
the blockage coefficient only and not on the precise details of the source; for 
convenience, we choose the pressure distributionp to be the product of two Gaussians 
and let D - h, so that in the limit E Q 1, we take 

where c2 = h2/sL2, po is a constant proportional to the total force exerted on the free 
surface, and 6 denotes the Dirac delta function. 

Further reduction of the forced K P  equation (1 1) is possible if W << 1 ; in this limit, 
in view of the boundary conditions (12), the free-surface elevation is independent of 
2 to leading order and, upon integrating (1 1) with respect to 2 across the channel, 
we find 

(14) 

This is the forced KdV equation derived in I t  on which the quasi-two-dimensional 
theory of Mei (1986) is based. In terms of the dimensional channel width 2w, the 
restriction W Q 1 implies that wa/h2 Q 1 which, as noted by Mei (1986), means that 
20 may be large compared with the water depth and still obtain a two-dimensional 
response ;$ the extent of validity of this approximation is examined later in $5.2. Also, 

t In I, the assumption L - h was made so that, in the limit e+O, the right-hand side of (14) 
was found to be proportional to b'(z). 

$ Strictly speaking, there is a small, near-field region close to the source where the response is 
three-dimensional. This region is studied in detail by Cole (1986). 

xi p, D 
7T+~7z-q(72)z-hzzz = 4 W h  {exp ( - ~ 2 ~ 2 ) l z .  
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note that the forcing on the right-hand side of (14) of proportional to the parameter 
p, D/h W which is similar to the blockage coefficient defined by Ertekin et al. (1984). 

3. Linear response 
Before embarking on a discussion of the full forced KP equation (ll),  it is 

instructive to examine the predictions of the linearized version of (1 1).  
We begin by inquiring whether linear theory predicts a steady-state response at 

critical conditions ( A  = 0). This question is readily answered for a channel of finite 
width : integrating the linearized form of (1  1 )  across the channel, making use of (13) 
and the boundary conditions (12), we find 

where 
f W  

This is the linearized forced KdV at  critical conditions and, as shown in I, the response 
grows indefinitely with time, i j  N fi as T+ 00. Thus, for W finite, 7 also grows without 
bound as T -+ co . 

For an unbounded channel (W+ a), a physically acceptable linear steady state 
ys(x, 2) exists and can be constructed by standard Green-function techniques : 

dp cos p2ZF(p ; z), 

ds exp ( - c2s2) exp (3:ps) 

where 

F = t exp ( - 3ipx) 

+texp(3ipx)Jrn X dsexp(-cr2s2)exp( -3ips) 

dsexp ( -cr2s2) sin (3fp(x-s)). 

These integrals cannot be evaluated analytically ; however, asymptotic approxima- 
tion is possible far from the source, 1~~x1 9 1 : 

X {i exp ( - 34p) - exp ( - 34 p2/4r2x2) sin 34 p} (CTX + + 00 ), (18a) 

ys- -3 i2~2po--  D 1  O0 dpcos-exp-3ip P2Z (crx j -m) .  
h r x J 0  X2 

Using the method of steepest descents, these expressions can be further simplified 
along the track of the source (2 = 0): 

It is worth noting that the finite extent of the pressure distribution cannot be entirely 
neglected far behind and close to the track of the source (c~x-+co, Z + O ) ;  if, in the 
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FIQURE 1. Far-field behaviour of the linear steady-state response behind the source (only half 
of the domain is displayed). 

limit ax+ co, exp ( - 3fp2/4a2z2) is approximated as 1 in (18a), the resulting integral 
exhibits highly oscillatory behaviour and becomes singular exactly at 2 = 0. A 
singularity of the same nature occurs along the track of the classical Kelvin ship-wave 
pattern (Urselll960). Of course, finite-source effects cancel the rapid oscillations close 
to 2 = 0 owing to destructive interference. 

The details of the steady-state wave pattern far behind the source are shown in 
figure 1, as computed by numerically evaluating the integrals in (18a, b). The wave 
crests have a parabolic shape covering the entire region behind the source. This wave 
geometry is in close agreement with that predicted by Inui (1936) at critical speed 
using the full linear-water-wave theory, without making the long-wave assumption 
inherent in the KP  equation. The relatively calm region along the track of the source 
is the result of destructive interference, as noted earlier. Far ahead of the source, 
there are no wave crests although there is a finite surface elevation which decays 
algebraically and contains an infinite amount of mass transferred from behind. 

4. Numerical solution of KP 
In order to obtain quantitative information about the generated wave pattern, 

including both dispersive and nonlinear effects, one has to resort to numerical 
investigation of the forced KP  equation (11). It is noteworthy that, although several 
numerical schemes have been proposed for the KdV in recent years (see Taha & 
Ablowitz 1984 for a detailed comparison of such schemes), numerical solution of K P  
does not seem to have been so successful. Only very recently, S. Pierini (1986, 
unpublished manuscript) presented an implicit, three-level finite-difference scheme 
for a modified K P  equation and studied certain initial-value problems. In  this section, 
an explicit finite-difference method for the standard KP  equation is presented. 
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Assuming that the source is turned on impulsively, the forced K P  equation (1  1)  
with the forcing (13) is equivalent to the initial-boundary-value problem 

r]TZ+Arzz-q(r]2)ss-hzzsz-kzz = 0 ( - 0 O  < x < 0 O 3  z > 0, T > O ) ,  (20) 

D 
r]z=-p0$~h{exp(-a2x2)}zz ( - 0 0  < x <  00, Z+O+,  T > O ) ,  (21a) 

7 = 0  ( - ~ o < x < ~ o ,  Z > O ,  T=O),  (21b) 

with ~ ( x , - Z , T ) = T ~ ( X , Z , T )  ( - 0 0 < 2 < 0 0 ,  220, T>,O). (22) 

In discussing the numerical solution, it proves convenient to integrate equation (20) 
once with respect to x: 

where we have made use of the additional information provided by linear-group- 
velocity arguments, that no waves appear far ahead of the source, so that r ]  and its 
derivatives vanish there. Working with (23), an explicit numerical scheme of the 
Lax-Wendroff type, similar to the one used for the KdV in I, is constructed; with 
the notation 

r]Tk = r](jAx, kAZ, nAT), 

qFz1 is expanded in a Taylor series : 

Making use of (23), r]$jk and r];Tjk are expressed exactly in terms of spatial 
derivatives and integrals of r ] ;  all derivatives are then discretized by centred 
differences and integrals are evaluated by trapezoidal rule. Also the boundary 
conditions (12), (21 a) are approximated with second-order, one-sided differences. The 
resulting scheme is fully explicit and conditionally stable, AT/Ax3 < 1,  
ATAx/AZ2 < 1, with O(AT3Ax2) local truncation error. 

A question that needs to be carefully addressed is that of proper boundary 
conditions ahead of and behind the source : in a numerical study, the infinite domain 
- 00 < x < 00 has to be truncated to a finite computational domain x-, < x < x+,, 
say; this necessitates the use of appropriate radiation conditions a t  x = xkm. As 
already indicated, ahead of the source at  a sufficiently large x-,, it is consistent to 
set r ]  and its derivatives equal to zero. Behind the source, however, a radiation 
boundary condition, which avoids artificial reflections at x = x+,, is needed. The form 
of such a boundary condition for the problem at hand, which is nonlinear and involves 
two spatial dimensions, is unknown. For this reason, we chose to use the rather ad 
hoc boundary condition of setting r ]  and as many x-derivatives as necessary equal to 
zero at x = x+* as well. This condition is admittedly crude but comparison of 
numerical with exact solutions seems to indicate that, nevertheless, it  is useful. 
Numerical solutions were compared against the exact nonlinear similarity solutions 
of K P  found by Redekopp (1980). Also, as described in the Appendix, it is possible 
to calculate independently the unsteady linearized response of the forced problem 
(20), (21) (in an unbounded domain) through Fourier integrals. Comparison of fully 
numerical solutions with these analytical solutions indicates that, for T = 0(1), the 
effect of the ad hoc boundary condition at x = x+, is confined close to the boundary 
and never contaminates more than 15-20 % of the computational domain. Thus, we 
developed some confidence in our results, obtained after discarding about one fifth 
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of the computational domain behind the source. See Katsis (1986) for further details 
concerning the numerical scheme and related error analysis. 

5. Nonlinear response in a channel of finite width 
In this section, numerical results of the nonlinear evolution of wave disturbances 

in a channel of finite width are presented. Two types of problems are considered : first, 
an initial-value problem with a free, straight-crested soliton spanning only half of 
the channel width as initial condition and, secondly, the forced problem defined by 
( Z O ) ,  (22) and (12) is discussed. 

5.1. Free-soliton evolution 
Through a linear stability analysis of the KP  equation, Kadomtsev & Petviashvili 
(1970) showed that straight-crested solitons are stable to small-amplitude, three- 
dimensional perturbations. It is interesting to ask what happens if such perturbations 
have finite amplitude so that a linear stability analysis is not valid. An experiment 
which addressed this question in a special setting was carried out by Ertekin (1984 
pp. 160-161), who recorded the evolution of an originally straight-crested soliton, 
travelling in a channel, as it suddenly encounted a section of the channel where the 
width was larger. He observed that, during a brief transition period, the soliton 
adjusted its amplitude and speed such that it became straight-crested again and 
spanned the entire channel width. 

This remarkable stability of solitons is investigated here numerically by solving 
the K P  equation (20) in a channel of fixed width, W =  6.0, with Ax=O.125, 
AZ = 0.1, AT = 0.001, using as initial condition a straight-crested soliton of ampli- 
tude equal to 1, which spans only half the channel width ; this initial-value problem, 
although it does not mimic precisely the experimental set-up, exhibits similar 
behaviour and is simpler to handle numerically. One may have misgivings about the 
discontinuity assumed in the initial condition, in view of the fact that the K P  was 
derived on the assumption of slow three-dimensional variations. However, very 
similar results are obtained even if the initial discontinuity is smoothed out. The 
results at  three different times are shown in figure 2 (a-c) .  After the initial disturbance 
is released, it bends backwards and slows down but, as soon as it reflects from the 
sidewalls, it quickly adjusts to form a straight-crested soliton of lower amplitude; 
also it appears that this adjustment process, which is reminiscent of soliton diffraction 
along a convex wall (Miles 1977), is clean in the sense that no appreciable wave 
disturbance is radiated behind. These conclusions are in qualitative agreement with 
the experiment of Ertekin (1984) and, as discussed in $6, they play an important part 
in explaining the radiation of straight-crested solitons by a moving source in the 
presence of sidewalls. The tendency of a three-dimensional initial disturbance to form 
two-dimensional solitons was also noted by Pierini (1986) in his numerical calculations 
using a modified KP. 

5.2. Forced soliton radiation 
The KP equation (20) is solved numerically subject to conditions (12), (21). In the 
calculations, the choice of parameters 

L D 
h h 

= 1, c =  0.1, -=  1 ,  p ,  = cr = E-1 ,  - (25) 

is made. Also, Ax '= 0.03, AZ = 0.02 and AT = 0.2 x 
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X 

FIGURE 2. Evolution of nonlinear free disturbance from initial condition consisting of a soliton 
spanning only half of the channel (only half of the domain is displayed); (a )  T = l , ( b )  T = 5, (c) 
T = 20. 
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‘X 

‘X 

FIGURE 3. Forced nonlinear response at T = 3 for F = 1 (only half of the domain is displayed); 
(a) Channel width W = 0.5, ( 6 )  W = 1.0. 

Figure 3(a,  b) shows the response at critical conditions (A = 0), at T = 3.0, for 
W = 0.5 and W = 1.0 respectively. In both cases, straight-crested solitons are 
radiated ahead of the source ; each soliton originally emerges as a three-dimensional 
disturbance but, as soon as it feels the presence of a sidewall, it adjusts to form a 
straight-crested soliton and propagates upstream. The period of soliton formation is 
an increasing function of W while the soliton amplitude is a decreasing function of 
W. Behind the source, the disturbance is clearly three-dimensional and is quite similar 
to the one computed by Ertekin et al. (1986), with the exception that, in our 
calculations, the waves downstream are somewhat more pronounced ; a similar 
difference is observed between two-dimensional calculations based on the KdV and 
the Boussinesq or Green- Naghdi equations ( I ;  Wu & Wu 1982; Ertekin 1984). 

3 F L M  177 
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0.6 

FIUURE 4. Forced nonlinear response at T = 3 and channel of fixed width W = 0.5 (only half of 
the domain is displayed); (a) F = 0.9, ( b )  F = 1.1. 

The validity of the quasi-two-dimensional approximation of Mei (1986) is examined 
by investigating the nature of the downstream disturbance as W is decreased. We 
find that, for the choice of parameters (25), the response behind the source is more 
or less two-dimensional only if W < 0.05, which places a rather unrealistic restriction 
on channel width, w < 0.5h. However, for h / L  = E ,  p ,  = 1, u = d, which correspond 
to an elongated source in the streamwise direction, the downstream disturbance is 
two-dimensional to a reasonable approximation for Was large as 2, w < 20h; in this 
case, the quasi-two-dimensional theory of Mei (1986) is very useful. Although we have 
not attempted an exhaustive parametric study, the above results suggest that the 
maximum W for which the downstream disturbance remains two-dimensional 
depends crucially on the source characteristics. 
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FIQURE 5. Comparison of theoretical estimates of soliton period and amplitude with experiment, 
for F = 1 .  (a )  period of soliton formation, T,, made dimensionless with h / U ,  as a function of the 
blockage coefficient 8, (6) soliton amplitude, A,, made dimensionless with h, as a function of 8 ;  
+, experimental results of Ertekin, Webster & Wehausen (1984). 

The dependence of soliton radiation on source speed is illustrated in figure 4(a ,  b) 
where the response for W = 0.5, at T = 3.0, and for two Froude numbers, F = 0.9 
and F = 1.1, respectively, are shown. As in the two-dimensional problem, both the 
period of soliton formation and soliton amplitude increase as the Froude number is 
increased. 

All the trends of the numerical predictions concerning soliton radiation, noted 
above, are at least in qualitative agreement with experiment. To make a quantitative 
comparison, we have to be able to relate the ships used in the experiments of Ertekin 

3-2 
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et al. (1984) to equivalent pressure distributions; in particular, we need to find the 
equivalent blockage coefficient of a pressure source. It is not clear how such a 
calculation could be made from first principles and, for this reason, we adopted the 
following heuristic approach : the blockage coefficient S is inversely proportional 
to w, 

C S = -  
W’ 

and, in order to determine a value for C, we insist that, for a certain W ,  the 
dimensionless amplitude observed by Ertekin et al. (1984) agrees with the computed 
one. Thus, we get C z 2 x Now, using this value for C, soliton amplitudes (made 
dimensionless with h)  and periods of soliton formation (made dimensionless with 
h / U ) ,  computed for different values of W ,  are plotted against S. The results are shown 
in figure 5(a,  b)  for F = 1 together with the experimental points. The agreement is 
very good for both amplitude and period, confirming the experimental observation 
that soliton-radiation characteristics depend heavily on the blockage coefficient. It 
is possible that this surprisingly good agreement is partly due to the fact that, as 
in the experiments, the theoretical periods and amplitudes were estimated close to 
the source, perhaps before the radiated solitons had reached steady state ; this point 
is further discussed by Mei (1986). 

6. Nonlinear response in an unbounded sea 
It was concluded in $5 that the period of soliton formation increases while soliton 

amplitude decreases as the channel width is increased. This trend clearly suggests (as 
Ertekin’s experiments also did to him) that, in the limit that the channel width 
becomes infinite ( W +  a), no straight-crested solitons appear ; however, generation 
of three-dimensional, unsteady, upstream disturbances is not precluded and, thus, 
the question as to whether a nonlinear steady state is reached or some unsteadiness 
persists still remains. This topic is taken up here. 

Using the numerical scheme described in $4 with Ax = 0.05, AZ = 0.035, 
A T  = 1.2 x and the same choice of parameters as in (25), the KP equation (20), 
subject to conditions (21), was solved numerically, taking special care that the 
response did not reach the boundary of the computational domain in the spanwise 
direction ; this was achieved by constantly increasing the computational domain in 
the Z-direction. The response at T = 6 for F = 1 is shown in figure 6. A three- 
dimensional wave of elevation forms upstream which, as time increases, tends to 
become less curved and propagates slowly ahead of the source. The fact that this is 
a purely nonlinear phenomenon is demonstrated in figure 7 ,  where both linear and 
nonlinear response on the track of the source (2 = 0) are plotted for T = 6, F = 1 : 
the linear disturbance does not show any sign of developing an upstream wave crest ; 
only a slow transfer of water ahead of the source from behind can be detected which 
eventually leads to the linear steady state discussed in $3. 

The appearance of an upstream wave disturbance as W + a  suggests that the 
mechanism of soliton formation in a channel of finite width can be understood as 
follows: independently of the presence of sidewalls, nonlinear effects lead to the 
formation of waves of elevation which are curved as they emerge upstream; as soon 
as they feel the presence of sidewalls, these waves rapidly become straight-crested 
and propagate upstream, in a way more or less similar to that described in $5.1 for 
free solitons. This argument also seems to explain the experimentally observed fact 
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FIGURE 6. Nonlinear forced response in an unbounded channel at T = 6 for F = 1 (only half of 
the domain is displayed). 
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FIGURE 7. Response in an unbounded channel along the track of the source at T = 6 for F = 1 ; 
-, nonlinear; linear. 

that, although soliton amplitude decreases as W increases, soliton mass increases : for 
T < O( I ) ,  the mass of the upstream disturbance shown in figure 6 increases with time, 
so that more mass is available for the formation of a straight-crested soliton when 
the disturbance hits the channel sidewalls; thus, i t  appears that the presence of 
sidewalls is not essential for radiating upstream waves but plays an important part 
in transforming these waves to straight-crested solitons. 

A question which has not been answered definitively is whether just one or a series 
of upstream disturbances are radiated as W + a. The answer to this question, which 

, is closely related to the existence of a nonlinear steady state, seems to depend on 
whether or not the upstream disturbance shown in figure 6 is eventually detached 
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completely from the main disturbance so that it does not feel the presence of the 
source. If that is the case, and our numerical calculations suggest that it is, a series 
of curved waves should be anticipated ahead of the source ; otherwise, it is possible 
that only a single wave appears and its overall mass keeps increasing as it tends to 
become less curved with time. Owing to the rapid increase of the computational 
domain, which makes runs prohibitively expensive for large T, we have been unable 
to carry the computation to times large enough to answer this question in an entirely 
convincing way. Nevertheless, the tendency to radiate upstream disturbances as 
W-too, revealed by our computations, points to the fact that this is a plausible 
mechanism for the generation of solitons in the open sea; in the presence of some 
topography, such disturbances would tend to form straight-crested solitons. 
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the National Science Foundation Grant MSM-8451154. 

Appendix. Linear unsteady response 
The linear, unsteady, response in an unbounded sea can be obtained through a fully 

numerical solution of the linearized version of the KP  equation (20), subject to 
conditions (21). However, in this case, it is also possible to find an analytical solution 
in terms of Fourier integrals, which can be evaluated without making use of the ad 
hoc radiation condition described in $4. Thus, the two approaches may be compared 
and the error due to the false boundary condition can be estimated. 

Using standard Fourier-integral methods, the linear response in an infinite domain 
(W+ a), at critical conditions ( A  = 0 ) ,  is found to be 

where 

and 

7 = nka h (zy T Re {exp (fin) s,' ds 5," dk Hkg}, 

Straightforward numerical evaluation of the double integral in (A 1 )  is not convenient 
owing to poor convergence rate. Instead, we write 

(2yRe{exp(fin)[om k:exp[i(kt-g)-G(Ty]g(k,C)dk}, k2 2 (A41 
7 = 1 -  - ma h T 

Where g satisfies 
3 

9 + - - i k 2  g = -  ( k > O ,  c = O ) ,  
ak ( " )  2k 2k 

with 9 %  i+igk3 ( k + O , [ = O ) ,  

and 

with 

a2g k4 -+- g = iik exp (-:ikP) 
aP 3 
ag l + i  
- = -- dkk  exp ($ik3) a[ . 2; 

([ > 0) 

(5 = 0). 
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Integrating numerically equation (A 5 ) ,  subject to (A 6), and equation (A 7), subject 
to (A 8 ) ,  which are only ordinary differential equations, g is calculated once and for 
all in the (k, c)-plane. For any time T, then, the linear response at  (5, 5) is found by 
evaluating numerically the single integral displayed in (A 4). 
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